Minggu, 01 Maret 2020

InfoTechno

Serat optik




Serat optik.

Serat optik adalah saluran transmisi atau sejenis kabel yang terbuat dari kaca atauplastik yang sangat halus dan lebih kecil dari sehelai rambut, dan dapat digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Sumber cahaya yang digunakan biasanya adalah laser atau LED[1]. Kabel ini berdiameter kurang lebih 120 mikrometer.

Cahaya yang ada di dalam serat optik tidak keluar karena indeks bias dari kaca lebih besar daripada indeks bias dari udara, karena laser mempunyai spektrum yang sangat sempit. Kecepatan transmisi serat optik sangat tinggi sehingga sangat bagus digunakan sebagai saluran komunikasi.

Perkembangan teknologi serat optik saat ini, telah dapat menghasilkan pelemahan (attenuation) kurang dari 20 decibels (dB)/km. Dengan lebar jalur (bandwidth) yang besar sehingga kemampuan dalam mentransmisikan data menjadi lebih banyak dan cepat dibandingan dengan penggunaan kabel konvensional. Dengan demikian serat optik sangat cocok digunakan terutama dalam aplikasi sistem telekomunikasi[2]. Pada prinsipnya serat optik memantulkan dan membiaskan sejumlah cahaya yang merambat didalamnya.

Efisiensi dari serat optik ditentukan oleh kemurnian dari bahan penyusun gelas/kaca. Semakin murni bahan gelas, semakin sedikit cahaya yang diserap oleh serat optik.

SejarahSunting

Penggunaan cahaya sebagai pembawa informasi sebenarnya sudah banyak digunakan sejak zaman dahulu, baru sekitar tahun 1930-an para ilmuwan Jermanmengawali eksperimen untuk mentransmisikan cahaya melalui bahan yang bernama serat optik. Percobaan ini juga masih tergolong cukup primitif karena hasil yang dicapai tidak bisa langsung dimanfaatkan, namun harus melalui perkembangan dan penyempurnaan lebih lanjut lagi. Perkembangan selanjutnya adalah ketika para ilmuawan Inggris pada tahun 1958 mengusulkan prototipe serat optik yang sampai sekarang dipakai yaitu yang terdiri atas gelas inti yang dibungkus oleh gelas lainnya. Sekitar awal tahun 1960-an perubahan fantastis terjadi di Asia yaitu ketika para ilmuwan Jepang berhasil membuat jenis serat optik yang mampu mentransmisikan gambar.

Di lain pihak para ilmuwan selain mencoba untuk memandu cahaya melewati gelas (serat optik) namun juga mencoba untuk ”menjinakkan” cahaya. Kerja keras itupun berhasil ketika sekitar 1959 laser ditemukan. Laser beroperasi pada daerah frekuensi tampak sekitar 1014 Hertz-15 Hertz atau ratusan ribu kali frekuensi gelombang mikro.

Pada awalnya peralatan penghasil sinar laser masih serba besar dan merepotkan. Selain tidak efisien, ia baru dapat berfungsi pada suhu sangat rendah. Laser juga belum terpancar lurus. Pada kondisi cahaya sangat cerah pun, pancarannya gampang meliuk-liuk mengikuti kepadatan atmosfer. Waktu itu, sebuah pancaran laser dalam jarak 1 km, bisa tiba di tujuan akhir pada banyak titik dengan simpangan jarak hingga hitungan meter.

Sekitar tahun 60-an ditemukan serat optik yang kemurniannya sangat tinggi, kurang dari 1 bagian dalam sejuta. Dalam bahasa sehari-hari artinya serat yang sangat bening dan tidak menghantar listrik ini sedemikian murninya, sehingga konon, seandainya air laut itu semurni serat optik, dengan pencahayaan cukup mata normal akan dapat menonton lalu-lalangnya penghuni dasar Samudera Pasifik.

Seperti halnya laser, serat optik pun harus melalui tahap-tahap pengembangan awal. Sebagaimana medium transmisi cahaya, ia sangat tidak efisien. Hingga tahun 1968 atau berselang dua tahun setelah serat optik pertama kali diramalkan akan menjadi pemandu cahaya, tingkat atenuasi (kehilangan)-nya masih 20 dB/km. Melalui pengembangan dalam teknologi material, serat optik mengalami pemurnian, dehidran dan lain-lain. Secara perlahan tetapi pasti atenuasinya mencapai tingkat di bawah 1 dB/km.

Kronologi Perkembangan Serat OptikSunting

1917 Albert Einstein memperkenalkan teoripancaran terstimulasi dimana jika ada atom dalam tingkatan energi tinggi
1954 Charles Townes, James Gordon, dan Herbert Zeiger dari Universitas ColumbiaUSA, mengembangkan maser yaitu penguatgelombang mikro dengan pancaran terstimulasi, dimana molekul darigasamonia memperkuat dan menghasilkangelombang elektromagnetik. Pekerjaan ini menghabiskan waktu tiga tahun sejak ide Townes pada tahun 1951 untuk mengambil manfaat dari osilasi frekuensi tinggi molekular untuk membangkitkan gelombang dengan panjang gelombang pendek pada gelombang radio.1958 Charles Townes dan ahli fisika Arthur Schawlow mempublikasikan penelitiannya yang menunjukan bahwa maser dapat dibuat untuk dioperasikan pada daerah infra merah dan spektrum tampak, dan menjelaskan tentang konsep laser.1960 Laboratorium Riset Bell dan Ali Javan serta koleganya William Bennett, Jr., dan Donald Herriott menemukan sebuah pengoperasian secara berkesinambungan dari laser helium-neon.1960 Theodore Maiman, seorang fisikawan dan insinyur elektro dari Hughes Research Laboratories, menemukan sumber laser dengan menggunakan sebuah kristal batu rubi sintesis sebagai medium.1961 Peneliti industri Elias Snitzer dan Will Hicks mendemontrasikan sinar laser yang diarahkan melalui serat gelas yang tipis(serat optik). Inti serat gelas tersebut cukup kecil yang membuat cahaya hanya dapat melewati satu bagian saja tetapi banyak ilmuwan menyatakan bahwa serat tidak cocok untuk komunikasi karena kerugian cahaya yang terjadi karena melewati jarak yang sangat jauh.1961 Penggunaan laser yang dihasilkan dari batu Rubi untuk keperluan medis di Charles Campbell of the Institute of Ophthalmology at Columbia-Presbyterian Medical Center dan Charles Koester of the American Optical Corporation menggunakan prototipe ruby laser photocoagulator untuk menghancurkan tumor pada retina pasien.1962 Tiga group riset terkenal yaitu General Electric, IBM, dan MIT’s Lincoln Laboratory secara simultan mengembangkan gallium arsenide laser yang mengkonversikan energi listrk secara langsung ke dalam cahaya infra merah dan perkembangan selanjutnya digunakan untuk pengembangan CD dan DVD player serta penggunaan pencetak laser.1963 Ahli fisika Herbert Kroemer mengajukan ide yaitu heterostructures, kombinasi dari lebih dari satu semikonduktor dalam layer-layer untuk mengurangi kebutuhan energi untuk laser dan membantu untuk dapat bekerja lebih efisien. Heterostructures ini nantinya akan digunakan pada telepon seluler dan peralatan elektronik lainnya.1966 Charles Kao dan George Hockhamyang melakukan penelitian di Standard Telecommunications Laboratories Inggris mempublikasikan penelitiannya tentang kemampuan serat optik dalam mentransmisikan sinar laser yang sangat sedikit kerugiannya dengan menggunakan serat kaca yang sangat murni. Dari penemuan ini, kemudian para peneliti lebih fokus pada bagaimana cara memurnikan bahan serat kaca tersebut.1970 Ilmuwan Corning Glass Works yaitu Donald Keck, Peter Schultz, dan Robert Maurer melaporkan penemuan serat optik yang memenuhi standar yang telah ditentukan oleh Kao dan Hockham. Gelas yang paling murni yang dibuat terdiri atas gabungan silika dalam tahap uap dan mampu mengurangi kerugian cahaya kurang dari 20 decibels per kilometer, yang selanjutnya pada 1972, tim ini menemukan gelas dengan kerugian cahaya hanya 4 decibels per kilometer. Dan juga pada tahun 1970, Morton Panish dan Izuo Hayashi dari Bell Laboratories dengan tim Ioffe Physical Institute dari Leningrad, mendemontrasikan laser semikonduktor yang dapat dioperasikan pada temperatur ruang. Kedua penemuan tersebut merupakan terobosan dalam komersialisasi penggunaan fiber optik.1973 John MacChesney dan Paul O. Connor pada Bell Laboratories mengembangkan proses pengendapan uap kimia ke bentuk ultratransparent glass yang kemudian menghasilkan serat optik yang mempunyai kerugian sangat kecil dan diproduksi secara massal.



Proses pengendapan uap kimia untuk memodifikasi serat optik

1975 Insinyur pada Laser Diode Labs mengembangkan Laser Semikonduktor, laser komersial pertama yang dapat dioperasikan pada suhu kamar.1977 Perusahaan telepon memulai penggunaan serat optik yang membawa lalu lintas telepon. GTE membuka jalur antara Long Beach dan Artesia, California, yang menggunakan transmisi LED. Bell Labs mendirikan sambungan yang sama pada sistem telepon di Chicago dengan jarak 1,5 mil di bawah tanah yang menghubungkan 2 switching station.1980 Industri serat optik benar-benar sudah berkibar, sambungan serat optik telah ada di kota kota besar di Amerika, AT&Tmengumumkan akan menginstal jaringan serat optik yang menghubungkan kota kota antara Boston dan Washington D.C., kemudian dua tahun kemudian MCImengumumkan untuk melakukan hal yang sama. Raksasa-raksasa elektronik macam ITT atau STL mulai memainkan peranan dalam mendalami riset-riset serat optik.1987 David Payne dari Universitas Southampton memperkenalkan optical amplifiers yang dikotori (dopped) oleh elemen erbium, yang mampu menaikan sinyal cahaya tanpa harus mengkonversikan terlebih dahulu ke dalam energi listrik.1988 Kabel Translantic yang pertama menggunakan serat kaca yang sangat transparan, dan hanya memerlukan repeateruntuk setiap 40 mil.1991 Emmanuel Desurvire dari Bell Laboratories serta David Payne dan P. J. Mears dari Universitas Southampton mendemontrasikan optical amplifiers yang terintegrasi dengan kabel serat optik tersebut. Dengan keuntungannya adalah dapat membawa informasi 100 kali lebih cepat daripada kabel dengan penguat elektronik (electronic amplifier).1996 TPC-5 merupakan jenis kabel serat optik yang pertama menggunakan penguat optik. Kabel ini melewati samudera pasifik mulai dari San Luis Obispo, California, ke Guam, Hawaii, dan Miyazaki, Jepang, dan kembali ke Oregon coast dan mampu untuk menangani 320,000 panggilan telepon.1997 Serat optik menghubungkan seluruh dunia, Link Around the Globe (FLAG) menjadi jaringan kabel terpanjang di seluruh dunia yang menyediakan infrastruktur untuk generasi internet terbaru.

Sistem Komunikasi Serat Optik (SKSO)Sunting

Berdasarkan penggunaannya maka SKSO dibagi atas beberapa generasi yaitu:

Generasi pertama (mulai 1975)Sunting

Sistem masih sederhana dan menjadi dasar bagi sistem generasi berikutnya, terdiri dari: alat encoding: mengubah input (misal suara) menjadi sinyal listrik transmitter: mengubah sinyal listrik menjadi sinyal gelombang, berupa LED dengan panjang gelombang 0,87 mm. serat silika: sebagai penghantar sinyal gelombang repeater: sebagai penguat gelombang yang melemah di perjalanan receiver: mengubah sinyal gelombang menjadi sinyal listrik, berupa fotodetektor alat decoding: mengubah sinyal listrik menjadi output (misal suara) Repeater bekerja melalui beberapa tahap, mula-mula ia mengubah sinyal gelombang yang sudah melemah menjadi sinyal listrik, kemudian diperkuat dan diubah kembali menjadi sinyal gelombang. Generasi pertama ini pada tahun 1978 dapat mencapai kapasitas transmisi sebesar 10 Gb.km/s.

Generasi kedua (mulai 1981)Sunting

Untuk mengurangi efek dispersi, ukuran teras serat diperkecil agar menjadi tipe mode tunggal. Indeks bias kulit dibuat sedekat-dekatnya dengan indeks bias teras. Dengan sendirinya transmitter juga diganti dengan diode laser, panjang gelombang yang dipancarkannya 1,3 mm. Dengan modifikasi ini generasi kedua mampu mencapai kapasitas transmisi 100 Gb.km/s, 10 kali lipat lebih besar daripada generasi pertama.

Generasi ketiga (mulai 1982)Sunting

Terjadi penyempurnaan pembuatan serat silika dan pembuatan chip diode laser berpanjang gelombang 1,55 mm. Kemurnian bahan silika ditingkatkan sehingga transparansinya dapat dibuat untuk panjang gelombang sekitar 1,2 mm sampai 1,6 mm. Penyempurnaan ini meningkatkan kapasitas transmisi menjadi beberapa ratus Gb.km/s.

Generasi keempat (mulai 1984)Sunting

Dimulainya riset dan pengembangan sistem koheren, modulasinya yang dipakai bukan modulasi intensitas melainkan modulasi frekuensi, sehingga sinyal yang sudah lemah intensitasnya masih dapat dideteksi. Maka jarak yang dapat ditempuh, juga kapasitas transmisinya, ikut membesar. Pada tahun 1984 kapasitasnya sudah dapat menyamai kapasitas sistem deteksi langsung. Sayang, generasi ini terhambat perkembangannya karena teknologi peranti sumber dan deteksi modulasi frekuensi masih jauh tertinggal. Tetapi tidak dapat disangkal bahwa sistem koheren ini punya potensi untuk maju pesat pada masa-masa yang akan datang.

Generasi kelima (mulai 1989)Sunting

Pada generasi ini dikembangkan suatu penguat optik yang menggantikan fungsi repeater pada generasi-generasi sebelumnya. Sebuah penguat optik terdiri dari sebuah diode laser InGaAsP (panjang gelombang 1,48 mm) dan sejumlah serat optik dengan doping erbium (Er) di terasnya. Pada saat serat ini disinari diode lasernya, atom-atom erbium di dalamnya akan tereksitasi dan membuat inversi populasi*, sehingga bila ada sinyal lemah masuk penguat dan lewat di dalam serat, atom-atom itu akan serentak mengadakan deeksitasi yang disebut emisi terangsang (stimulated emission) Einstein. Akibatnya sinyal yang sudah melemah akan diperkuat kembali oleh emisi ini dan diteruskan keluar penguat. Keunggulan penguat optik ini terhadap repeater adalah tidak terjadinya gangguan terhadap perjalanan sinyal gelombang, sinyal gelombang tidak perlu diubah jadi listrik dulu dan seterusnya seperti yang terjadi pada repeater. Dengan adanya penguat optik ini kapasitas transmisi melonjak hebat sekali. Pada awal pengembangannya hanya dicapai 400 Gb.km/s, tetapi setahun kemudian kapasitas transmisi sudah menembus harga 50 ribu Gb.km/s.

Generasi keenamSunting

Pada tahun 1988 Linn F. Mollenauer memelopori sistem komunikasi soliton. Soliton adalah pulsa gelombang yang terdiri dari banyak komponen panjang gelombang. Komponen-komponennya memiliki panjang gelombang yang berbeda hanya sedikit, dan juga bervariasi dalam intensitasnya. Panjang soliton hanya 10-12 detik dan dapat dibagi menjadi beberapa komponen yang saling berdekatan, sehingga sinyal-sinyal yang berupa soliton merupakan informasi yang terdiri dari beberapa saluran sekaligus (wavelength division multiplexing). Eksperimen menunjukkan bahwa soliton minimal dapat membawa 5 saluran yang masing-masing membawa informasi dengan laju 5 Gb/s. Cacah saluran dapat dibuat menjadi dua kali lipat lebih banyak jika digunakan multiplexing polarisasi, karena setiap saluran memiliki dua polarisasi yang berbeda. Kapasitas transmisi yang telah diuji mencapai 35 ribu Gb.km/s.

Cara kerja sistem soliton ini adalah efek Kerr, yaitu sinar-sinar yang panjang gelombangnya sama akan merambat dengan laju yang berbeda di dalam suatu bahan jika intensitasnya melebihi suatu harga batas. Efek ini kemudian digunakan untuk menetralisir efek dispersi, sehingga soliton tidak akan melebar pada waktu sampai di receiver. Hal ini sangat menguntungkan karena tingkat kesalahan yang ditimbulkannya amat kecil bahkan dapat diabaikan. Tampak bahwa penggabungan ciri beberapa generasi teknologi serat optik akan mampu menghasilkan suatu sistem komunikasi yang mendekati ideal, yaitu yang memiliki kapasitas transmisi yang sebesar-besarnya dengan tingkat kesalahan yang sekecil-kecilnya yang jelas, dunia komunikasi abad 21 mendatang tidak dapat dihindari lagi akan dirajai oleh teknologi serat optik.


Dalam standarisasinya kode warna dari selubung luar (jacket) kabel serat optik jenisPatch Cord adalah sebagai berikut:

Warna selubung luar/jacketArtinyaKuningserat optik single-modeJinggaserat optik multi-modeAquaOptimal laser 10 giga 50/125 mikrometer serat optik multi-modeAbu-AbuKode warna serat optik multi-mode, yang tidak digunakan lagiBiruKadang masih digunakan dalam model perancangan


KonektorSunting

Pada kabel serat optik, sambungan ujung terminal atau disebut juga konektor, biasanya memiliki tipe standar seperti berikut:

FC (Fiber Connector): digunakan untuk kabel single mode dengan akurasi yang sangat tinggi dalam menghubungkan kabel dengan transmitter maupun receiver. Konektor ini menggunakan sistem drat ulir dengan posisi yang dapat diatur, sehingga ketika dipasangkan ke perangkat lain, akurasinya tidak akan mudah berubah.SC (Subsciber Connector): digunakan untuk kabel single mode, dengan sistem dicabut-pasang. Konektor ini tidak terlalu mahal, simpel, dan dapat diatur secara manual serta akurasinya baik bila dipasangkan ke perangkat lain.ST (Straight Tip): bentuknya seperti bayonet berkunci hampir mirip dengan konektor BNC. Sangat umum digunakan baik untuk kabel multi mode maupun single mode. Sangat mudah digunakan baik dipasang maupun dicabut.Biconic: Salah satu konektor yang kali pertama muncul dalam komunikasi fiber optik. Saat ini sangat jarang digunakan.D4: konektor ini hampir mirip dengan FC hanya berbeda ukurannya saja. Perbedaannya sekitar 2 mm pada bagianferrule-nya.SMA: konektor ini merupakan pendahulu dari konektor ST yang sama-sama menggunakan penutup dan pelindung. Namun seiring dengan berkembangnya ST konektor, maka konektor ini sudah tidak berkembang lagi penggunaannya.E200

Selanjutnya jenis-jenis konektor tipe kecil:

LCSMUSC-DC

Selain itu pada konektor tersebut biasanya menggunakan warna tertentu dengan maksud sebagai berikut:

Warna KonektorArtiKeterangan
BiruPhysical Contact (PC), 0°yang paling umum digunkan untuk serat optik single-mode.HijauAngle Polished (APC), 8°sudah tidak digunakan lagi untuk serat optik multi-modeHitamPhysical Contact (PC), 0°Abu-abu,KremPhysical Contact (PC), 0°serat optik multi-modePutihPhysical Contact (PC), 0°MerahPenggunaan khusus

Perkembangan serat optik di Indonesia tidak lepas dari perkembangan sejarah serat optik didunia, yang pada awalnya pertama kalinya ditemukan di Jerman pada tahun 1930 an. Pada saat itu serat optik belum dapat digunakan. Selanjutnya pada waktu hampir bersamaan pada tahun 1950 an ilmuwan Inggris dan Jepang berhasil membuat jenis serat optik yang mampu mengirimkan gambar. Saat itu serat optik berupa serat kaca yang dibungkus lagi dengan serat lain. Penelitian terus berlanjut hingga beberapa tahun berikutnya diketemukan serat optik yang memiliki kemampuan memindahkan cahaya dengan kemurnian yang tinggi. Namun demikian saat masih belum dapat dikatakan ideal. Penelitian selanjutnya adalah dengan percobaan penggunaan material sehingga di ketemukan serat optik yang memiliki kemampuan yang sangat bagus. Dan pada tahun 1980-an di mana serat optik sudah mampu mentransmisikan gelombang cahaya dengan efisien maka lomba indunstri serat optik dimulai.[8]

Perkembangan jaringan serat optik di indonesia tidak terlepas dari perkembangan industri telekomunikasi. Beberapa operator telekomunikasi dan penyedia jasa multimedia tercatat telah menggelar jaringan fiber optik ini yakni PT Telkom Indonesia, PT Indosat, PT Excel Komindo, dan Indonesia Comnet Plus. Jaringan-jaringan ini telah mencakup beberapa pulau utama di indonesia yakni Jawa, Bali, Sumatra, Kalimantan dan Sulawesi. Hingga saat ini, telkom masih menjadi operator telekomunikasi yang memiliki jaringan fiber optik terpanjang di Indonesia yakni memcapai 13.600.

Dan sejarah perkembangan serat optik di Indonesia tidak lepas dari muncul nya perusahaan serat optik seperti STT dan STL yang punya peranan besar dengan perkembangan serat optik indonesia selanjutnya. Tidak jelas kapan persis nya dimulai sejarah perkembangan serat optik di Indonesia. namun perkembangan selanjutnya lebih mengarah pada pemmfaatan serat optik itu sendiri. Penggunaan serat optik di Indonesia mengalami perkembangan pesat hal ini di sebab kan dengan serat optik, maka data yang di kirimkan lebih cepat dan akurat. Saat ini penggunaan serat optik di indonesia di antara nya adalah untuk jaringan internet,pengiriman data,telekomunikasi,perangkat pengintaian,dll.

Perusahaan penyedia jaringan serat optik Indonesia saat ini ada banyak,di antara nya adalah fiber optik Telkom, MNCTV, Biznet network dan first media. Kelebihan internet yang menggunakan serat optik dibanding nirkabel adalah koneksi lebih stabil dan pengiriman data jauh lebih cepat. Pemanfaatan serat optik indonesia sebagai alat pengiriman data biasanya di gunakan di pabrik,industri atau gedung,sehingga arus data jauh lebih lancar.

Telkom mengungkapkan hingga saat ini,persentase kabel tembaga dab serat optik berimbang. “Sekarang posisi nya lima puluh persen kabel tembaga dan lima puluh persen kabel serat optik” ujar Dian Rahmawan, Direktur Consumer Service Telkom saat ditemui di acara fiber to the home conference. Telkom mengklaim jaringan serat optiknya menjangkau 7 juta rumah di Indonesia. dia meyakini kabel serat optik akan menjadi tumpuan layanan telekomunikasi dimasa depan. “2020 akan pakai fiber (serat optik) semua.[9]

Apa itu Fiber Optik atau Serat Optik (Optical Fiber) ?

Fiber Optik atau dalam bahasa Inggris disebut dengan Optical Fiber atau Fiber Optics adalah jenis kabel yang terbuat dari serat kaca atau plastik halus yang dapat mentransmisikan sinyal cahaya dari satu tempat ke tempat lainnya. Diameter kabel fiber optik pada umumnya berukuran sekitar 120 mikrometer. Sedangkan Sumber cahayanya dapat berupa sinar Laser ataupun sinar LED. Keuntungan-keuntungan menggunakan Kabel Fiber Optik sebagai media transmisi diantaranya adalah tingginya bandwidth yang dimilikinya, tidak rentan terhadap gangguan (interference) apabila dibandingkan dengan kabel tembaga, lebih tipis dan ringan serta dapat mentransmisikan data dalam bentuk digital.
Baca juga : Pengertian Media Transmisi dan Jenis-jenisnya.

Bagian-bagian Kabel Fiber Optik

Kabel Fiber Optik pada dasarnya terdiri dari beberapa bagian utama yaitu :

Core (inti) – Core adalah bagian yang mentransmisikan cahaya yang terbuat dari kaca ataupun plastik. Semakin besar Core atau intinya ini, semakin banyak cahaya yang dapat ditransmisikan ke dalam fiber.Cladding – Bagian Optik luar yang mengelilingi Core (inti) yang memantulkan gelombang cahaya kembali ke Inti.Coating (Pelapisan) – Pelapisan biasanya berlapis-lapis plastik yang diaplikasikan untuk menjaga kekuatan serat, menyerap goncangan dan memberikan perlindungan ekstra terhadap Fiber. Lapisan penyangga ini tersedia dari 250 mikron hingga 900 mikron yang berfungsi untuk melindungi fiber dari kerusakan dan kelembaban.Outer Jacket (Jaket Luar) – Ratusan hingga ribuan serat/fiber optik yang disusun dan di bundle dalam sebuah kabel fiber optik dilindungi oleh pembungkus luar kabel yang biasanya disebut dengan outer jacket.




Jenis-jenis Kabel Fiber Optik

Kabel Fiber Optik atau Optical Fiber ini pada umumnya terdiri dari dua jenis yaitu Single-mode fibers dan Multi-mode fibers.

1. Single-mode Fiber (SMF)

Single-mode fibers (Fiber Mode Tunggal) adalah jenis serat optik yang umumnya digunakan untuk mentransmisikan jarak yang lebih jauh. Fiber Mode Tunggal ini memiliki inti kecil yang berdiameter sekitar 9 mikron dan mengirimkan sinar laser inframerah  yang memiliki panjang gelombang dari 1.300 nanometer hingga 1.550 nanometer. Karena memiliki diameter yang lebih kecil yang memungkinkan hanya satu mode cahaya untuk merambat, jumlah pantulan cahaya yang dibuat ketika cahaya melewati inti akan  berkurang dan dapat menurunkan pelemahan (attenuation) sehingga menghasilkan kemampuan bagi sinyal untuk bergerak lebih jauh.

2. Multi-mode Fiber (MMF)

Multi-mode Fiber atau Fiber multi-mode adalah jenis serat optik yang dirancang khusus untuk mentransmisikan lebih banyak sinar cahaya dalam waktu yang bersamaan dengan masing-masing pada sudut pantulan yang sedikit berbeda di dalam inti serat optic tersebut. Multi-mode Fiber ini pada umumnya digunakan untuk mentransmisikan data pada jangkauan jarak yang relatif dekat. Multi-mode Fiber memiliki inti yang lebih besar dengan ukuran diameter sekitar 62,5 mikron dan mentransmisikan cahaya inframerah yang panjang gelombangnya sekitar 850nm hingga 1.300 nm dari LED.Karena memiliki diameter yang lebih besar, jumlah pantulan cahaya yang dibuat ketika cahaya melewati inti menjadi meningkat sehingga menciptakan kemampuan untuk mentransmisikan lebih banyak data dalam waktu yang bersamaan.

Cara Kerja Fiber Optik

Prinsip kerja Fiber Optik adalah mentransmisikan informasi dalam bentuk gelombang cahaya atau photon (Foton). Berbeda dengan kabel yang terbuat dari bahan tembaga yang mentransmisikan data dengan menggunakan aliran listrik, Fiber atau Serat Optik menggunakan sinyal cahaya yang telah dikonversikan dari aliran listrik untuk mentransmisikan datanya.

Serat optik mengirimkan data dalam bentuk partikel cahaya atau foton yang berbentuk denyutan pulsa digital melalui kabel serat optik. Core dan Cladding pada fiber optik masing-masing memiliki indeks bias yang berbeda yang membelokkan cahaya yang masuk pada sudut tertentu. Ketika sinyal cahaya dikirim melalui kabel serat optik, mereka memantul Core dan Cladding dalam serangkaian bouncing zig-zag, mengikuti proses yang disebut Refleksi Internal Total.

Perlu diketahui bahwa Sinyal cahaya pada fiber optik tidak dapat bergerak sesuai dengan kecepatan cahayanya, hal ini dikarenakan lapisan kaca pada fiber optik yang lebih padat. Sinyal Cahaya pada fiber optic ini hanya dapat bergerak sekitar 30% lebih lambat dari kecepatan cahaya. Untuk memperbarui dan meningkatkan sinyal sepanjang perjalanannya, transmisi fiber optik kadang-kadang membutuhkan repeater pada interval jarak tertentu. Repeater ini digunakan untuk mengubah sinyal optic yang berbentuk cahaya menjadi sinyal listrik dan kemudian memproses sinyal listrik tersebut dan mentransmisikannya kembali sinyal optik.

Kelebihan dan Kekurangan Kabel Fiber Optik

Kabel Fiber Optik memiliki banyak kelebihan dan telah banyak digunakan untuk keperluan transmisi data yang berkecepatan tinggi. Namun Kabel yang berserat optik ini juga memiliki kelemahan. Berikut ini adalah beberapa kelebihan dan kelemahan kabel fiber optik.

Kelebihan Kabel Fiber Optik

Berikut ini adalah beberapa kelebihan Kabel Fiber Optik :

Bandwidth – Sistem komunikasi serat optik dapat digunakan untuk mengirimkan lebih banyak informasi daripada kabel tembaga dan sangat cocok untuk digunakan dengan komunikasi digital. Serat dapat membawa data dalam jumlah besar karena kapasitas bandwidth yang lebih besar. Data dapat ditransmisikan dengan kecepatan sangat tinggi biasanya 1,6 TB/detik di lapangan. Karena kenyataan ini, internet generasi berikutnya akan didasarkan pada cahaya atau dikenal sebagai LiFi (Light Fidelity).Kehilangan Daya yang sangat Rendah – Serat optik menawarkan kehilangan daya yang sangat rendah. Sinyal dapat ditransmisikan ke jarak yang lebih jauh. Kabel Serat Optik ini hanya kehilangan sinyal yang rendah sekitar 0,3dB/Km. Oleh karena itu pengulang optic atau Repeater tidak diperlukan untuk jarak yang relatif jauh. Apabila dibandingkan dengan kabel tembaga, kabel serat optik kebal terhadap interferensi elektromagnetik dan tidak menghasilkan interferensi saat beroperasi.Keamanan – Fiber Optik memiliki kualitas tinggi dalam kinerja kerahasiaan dan komunikasi. Fiber optik sulit untuk disadap. Hal ini dikarenakan Serat Optik atau Optical Fiber ini tidak memancarkan energi elektromagnetik. Serat pada dasarnya adalah media paling aman yang tersedia untuk membawa data sensitive.Fleksibilitas – Karena kabel serat optik jauh lebih ringan dan diameternya lebih kecil dari kabel tembaga, mereka juga menempati ruang lebih sedikit dengan kabel dengan kapasitas informasi yang sama dan dapat lebih mudah diproduksi dan dipasang.Biaya Bahan – Kabel serat optik lebih murah daripada kabel tembaga, yang secara drastis dapat mengurangi biaya pemasangan kabel baru atau pada saat merawat kabel lama.

Kelemahan Kabel Fiber Optik

Meskipun banyak kelebihan, Fiber optic juga terdapat kelemahan yang perlu dipertimbangkan dalam pemakaiannya. Berikut dibawah ini adalah kelemahan kabel fiber atau serat optik ini.

Tidak bisa Dilipat dalam radius kecil – Fiber Optik dapat dengan mudah dipatahkan atau kehilangan transmisi apabila dililitkan dalam radius kecil (beberapa sentimeter). Namun hal ini biasanya diatasi dengan membungkus serat optk dalam sarung atau jacket plastic sehingga mempersulit penekukan kabel serat ini ke dalam radius kecil.Sangat Rentan terhadap Kerusakan – Fiber atau serat optik membutuhkan perlindungan lebih banyak di sekitar kabel dibandingkan dengan tembaga. Ukuran kabel serat optik sangat kabel kecil dan padat sehingga sangat rentan terpotong atau rusak selama instalasi atau kegiatan konstruksi. Jadi, apabila memilih kabel serat optik sebagai media transmisi, maka diperlukan kegiatan khusus untuk mengatasi pemulihan dan pencadangannya.Biaya Instalasi yang Tinggi – Fiber atau Serat optik lebih mahal untuk dipasang dan harus dipasang oleh spesialis yang telah dilatih dengan terampil. Fiber Optik pada dasarnya tidak sekuat kabel tembaga sehingga pemasangannya harus sangat hati-hati dan teliti. Di samping itu, diperlukan alat uji khusus untuk instalasi serat optik.

Jumat, 30 Agustus 2019

Taufiqteenstory

Infrastruktur Jaringan Komputer





                                                           


 Infrastruktur Jaringan Komputer
Untuk membangun sebuah jaringan komputer maka diperlukan sebuah jaringan komputer, diperlukan hardware untuk infrastrukturnya. Hardware yang dibutuhkan antara lain :
  1.  Ethernet Card (NIC) adalah  interface

    komunikasi data dalam sistem jaringan komputer. Kecepatan rate datanya beragam  yaitu 10/10 Mbps, 10/100           

    Mbps, dan yang terbaru 100/1000 Mbps. 
Kabel UTP yaitu kabel jaringan komputer. Penggunaannya maksimal 100 meter, jika lebih harus dipasang repeater (penguat sinyal data). Pengurutan warna kabel UTP dibedakan menjadi dua macam, yaitu model straight dan crossover. Model straight digunakan untuk hubungan PC ke Hub. Dan model crossover digunakan untuk hubungan PC ke PC.
  1. Hub / Concentrator atau Switch adalah sebuah repeater dengan banyak port (multi port).
  2. Router adalah hadware yang berfungsi untuk menghubungkan dua network atau lebih yang berbeda network id atau arsitekturnya.
  3. Komputer standar yaitu hardware yang berfungsi untuk menjalankan sistem operasi dalam sistem jaringan komputer.
  4. Modem adalah modulator de modulator yang berfungsi untuk mengubah informasi data digital ke analog atau sebaliknya.
  5. Hardware wireless jika ingin menggunakan Wifi, maka perlu dipasang Hardware wireless, antara lain adalah Access Point, Router Wifi, PCI Wifi atau PCMCA.
  6. Repeater, perangkat untuk memperkuat sinyal dengan cara menerima sinyal dari suatu segmen LAN dan memancarkannya kembali dengan kekuatan yang sama dengan signal asli pada segmen kabel LAN yang lain.
  7. Bridge, Perangkat untuk memisahkan jaringan yang luas menjadi sub jaringan yang lebihkecil, bridge juga digunakan untuk menghubungkan dua jenis jaringan yang berbeda.  

JENIS-JENIS JARINGAN KOMPUTER
Dalam jaringan Komputer klasifikasi khusus atau pembagian menurut luas cakupannya, beberapa klasifikasi dalam jaringan Komputer menurut luas cakupan dan teknologi yang digunakannya ada 3 jenis jaringan komputer yaitu :

1. Local Area Network (LAN)
Sebuah LAN adalah jaringan yang dibatasi oleh area yang relatif kecil, umumnya dibatasi oleh area lingkungan seperti sebuah perkantoran di sebuah gedung, atau sebuah sekolah, dan biasanya tidak jauh dari sekitar 1 km persegi. Beberapa model konfigurasi LAN, satu komputer biasanya di jadikan sebuah file server. Yang mana digunakan untuk menyimpan perangkat lunak (software) yang mengatur aktifitas jaringan, ataupun sebagai perangkat lunak yang dapat digunakan oleh komputer-komputer yang terhubung ke dalam network. Komputer-komputer yang terhubung ke dalam jaringan (network) itu biasanya disebut dengan workstation. Biasanya kemampuan workstation lebih di bawah dari file server dan mempunyai aplikasi lain di dalam harddisknya selain aplikasi untuk jaringan. Kebanyakan LAN menggunakan media kabel untuk menghubungkan antara satu komputer dengan komputer
lainnya.

2. Metropolitan Area Network (MAN)
Sebuah MAN, biasanya meliputi area yang lebih besar dari LAN, misalnya antar wilayah dalam satu propinsi. Dalam hal ini jaringan menghubungkan beberapa buah jaringan-jaringan kecil ke dalam lingkungan area yang lebih besar, sebagai contoh yaitu : jaringan LAPAN Bandung dimana beberapa Stasiun Pengamat Dirgantara di daerah jawa barat dihubungkan antara satu dengan lainnya.
3. Wide Area Network (WAN)
Wide Area Networks (WAN) adalah jaringan yang lingkupnya biasanya sudah menggunakan sarana Satelit ataupun kabel bawah laut sebagai contoh keseluruhan jaringan LAPAN Bandung dan Stasiun Pengamat Dirgantara yang ada di Indonesia . Stasiun Pengamat Dirgantara yang ada di Pameungpeuk bisa menghubungi Stasiun Pengamat Dirgantara yang berada di Biak, hanya dalam beberapa menit. Biasanya WAN agak rumit dan sangat kompleks, menggunakan banyak sarana untuk menghubungkan antara LAN dan WAN ke dalam Komunikasi Global seperti Internet. Tapi bagaimanapun juga antara LAN, MAN dan WAN tidak banyak berbeda dalam beberapa hal, hanya lingkup areanya saja yang berbeda satu diantara yang lainnya.

TOPOLOGI JARINGAN
Topologi pada dasarnya adalah peta dari sebuah jaringan,dimana topologi suatu jaringan didasarkan pada cara penghubung sejumlah node atau sentral dalam membentuk suatu sistem jaringan. Topologi jaringan terbagi lagi menjadi dua, yaitu topologi secara fisik (physical topology) dan topologi secara logika (logical topology). Topologi secara fisik menjelaskan bagaimana susunan dari kabel, komputer dan lokasi dari semua komponen jaringan. Sedangkan topologi secara logika menetapkan bagaimana informasi atau aliran data dalam jaringan. Topologi jaringan yang umum dipakai adalah : Mess, Bintang (Star), Bus, Tree, dan Cincin (Ring).

1. Topologi BUS
Pada topologi ini semua sentral dihubungkan secara langsung pada medium transmisi dengan konfigurasi yang disebut Bus. Transmisi sinyal dari suatu sentral tidak dialirkan secara bersamaan dalam dua arah. Hal ini berbeda sekali dengan yang terjadi pada topologi jaringan mesh atau bintang, yang pada kedua sistem tersebut dapat dilakukan komunikasi atau interkoneksi antar sentral secara bersamaan. topologi jaringan bus tidak umum digunakan untuk interkoneksi antar sentral, tetapi biasanya digunakan pada sistem jaringan komputer.

Topologi BUS mempunyai karakteristik jaringan sebagai berikut :
  • Node – node dihubungkan secara serial sepanjang kabel, dan pada kedua ujung kabel ditutup dengan terminator.
  • Sangat sederhana dalam instalasi, karena hanya menghubungkan antar simpul saja.
  • Juga sangat ekonomis dalam biaya (hanya dibutuhkan kabel dan connector yang harganya tidak terlalu mahal / murah).
  • Paket-paket data saling bersimpangan pada suatu kabel sehingga jika node yang dihubungkan semakin banyak, kinerja jaringan akan semakin turun sebab sering terjadi collision.
  • Tidak diperlukan hub, yang banyak diperlukan adalah Tconnector pada setiap ethernet card.
  • Problem yang sering terjadi adalah jika salah satu node rusak, maka jaringan keseluruhan dapat down, sehingga seluruh node tidak bisa berkomunikasi dalam jaringan tersebut.
  • Jenis kabel yang digunakan adalah coaxial (jenis yang palingmurah).

Keuntungan Topologi Bus
  • Jumlah Node tidak dibatasi, tidak seperti hub yang dibatasi oleh jumlah dari port (misal : 16 port untuk 16 node) .
  • Kecepatan pengiriman data lebih cepat, karena data berjalan searah.
  • Lebih mudah dan murah jika ingin menambah atau mengurangi jumlah node, karena yang dibutuhkan hanya kabel dan konektornya saja
Kekurangan Topologi BUS
  • Jika lalulintas data yang diolah terlalu besar dapat mengakibatkan kemacetan.
  • Diperlukan repeater untuk menguatkan sinyal pada pemasangan jarak jauh.
  • Jika salah satu node mengalami kerusakan, maka jaringan tidak dapat beroperasi.

2. Topologi START
Dalam topologi jaringan bintang, salah satu sentral dibuat sebagai sentral pusat. Bila dibandingkan dengan sistem mesh, sistem ini mempunyai tingkat kerumitan jaringan yang lebih sederhana sehingga sistem menjadi lebih ekonomis, tetapi beban yang dipikul sentral pusat cukup berat. Dengan demikian kemungkinan tingkat kerusakan atau gangguan dari sentral ini lebih besar.

  1. Setiap node berkomunikasi langsung dengan konsentrator (HUB)
  2. Bila setiap paket data yang masuk ke consentrator (HUB) kemudian di broadcast keseluruh node yang terhubung sangat banyak (misalnya memakai hub 32 port), maka kinerja jaringan akan semakin turun.
  3. Sangat mudah dikembangkan, sebab setiap node hanya terhubung secara langsung ke consentrator.
  4. Jika salah satu ethernet card rusak, atau salah satu kabel pada terminal putus, maka keseluruhhan jaringan masih tetap bisa berkomunikasi atau tidak terjadi down pada jaringan keseluruhan tersebut.
  5. Tipe kabel yang digunakan biasanya jenis UTP.

Kelebihan Topologi START
  • Jika terjadi penambahan atau pengurangan terminal tidak mengganggu operasi yang sedang berlangsung.
  • Jika salah satu terminal rusak, maka terminal lainnya tidak mengalami gangguan
  • Arus lalulintas informasi data lebih optimal

Kekurangan Topologi START
  • Jumlah terminal terbatas, tergantung dari port yang ada pada hub.
  • Lalulintas data yang padat dapat menyebabkan jaringan bekerja lebih lambat.
3. Topologi Ring
Setiap komputer terhubung ke komputer selanjutnya dalam ring, dan setiap komputer mengirim apa yang diterima dari komputer sebelumnya. Pesan-pesan mengalir melalui ring dalam satu arah. Setiap komputer yang mengirimkan apa yang diterimanya, ring adalah jaringan yang aktif. Tidak ada akhir pada ring. Layout ini serupa dengan linear bus, kecuali simpul pada ujung kabel utama yang saling terhubung, sehingga membentuk suatu lingkaran dengan penghubungnya menggunakan segmen kabel.


Karateristik Topologi Ring
  1. Node-node dihubungkan secara serial di sepanjang kabel, dengan bentuk jaringan seperti lingkaran.
  2. Sangat sederhana dalam layout seperti jenis topologi bus.
  3. Paket-paket data dapat mengalir dalam satu arah (kekiri atau kekanan) sehingga collision dapat dihindarkan.
  4. Problem yang dihadapi sama dengan topologi bus, yaitu: jika salah satu node rusak maka seluruh node tidak bisa berkomunikasi dalam jaringan tersebut.
  5. Tipe kabel yang digunakan biasanya kabel UTP atau Patch Cable (IBM tipe 6).

Kelebihan Topologi Ring
  • Aliran data mengalir lebih cepat karena dapat melayani data dari kiri atau kanan dari server.
  • Dapat melayani aliran lalulintas data yang padat, karena data dapat bergerak kekiri atau kekanan.
  • Waktu untuk mengakses data lebih optimal.
Kekurangan Topologi Ring
  • Penambahan terminal /node menjadi lebih sulit bila port sudah habis.
  • Jika salah satu terminal mengalami kerusakan, maka semua terminal pada jaringan tidak dapat digunakan.
4. Topologi Mesh
Topologi jaringan ini menerapkan hubungan antar sentral secara penuh. Jumlah saluran harus disediakan untuk membentuk jaringan Mesh adalah jumlah sentral dikurangi 1 (n-1, n = jumlah sentral). Tingkat kerumitan jaringan sebanding dengan meningkatnya jumlah sentral yang terpasang, dengan demikian disamping kurang ekonomis juga relatif mahal dalam pengoperasiannya.


Karekteristik Topologi Mesh
  1. topologi mesh memiliki hubungan yang berlebihan antara peralatan-peralatan yang ada.
  2. Susunannya pada setiap peralatan yang ada didalam jaringan saling terhubung satu sama lain. jika jumlah peralatan yang terhubung sangat banyak, tentunya ini akan sangat sulit sekali untuk dikendalikan dibandingkan hanya sedikit peralatan saja yang terhubung.

Kelebihan Topologi Mesh
  • Keuntungan utama dari penggunaan topologi mesh adalah fault tolerance.
  • Terjaminnya kapasitas channel komunikasi, karena memiliki hubungan yang berlebih.
  • Relatif lebih mudah untuk dilakukan troubleshoot.
Kekurangan Topologi Mesh
  • Sulitnya pada saat melakukan instalasi dan melakukan konfigurasi ulang saat jumlah komputer dan peralatan-peralatan yang terhubung semakin meningkat jumlahnya.
  • Biaya yang besar untuk memelihara hubungan yang berlebih.


5. Topologi Tree
Topologi jaringan ini disebut juga sebagai topologi jaringan bertingkat. Topologi ini biasanya digunakan untuk interkoneksi antar sentral dengan hirarki yang berbeda. Untuk hirarki yang lebih rendah digambarkan pada lokasi yang rendah dan semakin keatas mempunyai hirarki semakin tinggi. Topologi jaringan jenis ini cocok digunakan pada sistem jaringan komputer.



Karteristik Topologi Tree
  1. setiap node berkomunikasi langsung dengan sub node, sedangkan sub node berkomunikasi dengan central node. traffic data mengalir dari node ke sub node lalu diteruskan ke central node dan kembali lagi.
  2. Digunakan pada jaringan yang besar dan membutuhkan penghubung yang banyak atau melebihi dari kapasitas maksimal penghubung.

Kelebihan Topologi Tree
  • jika satu kabel sub node terputus maka sub node yang lainnya tidak terganggu, tetapi apabila central node terputus maka semua node disetiap sub node akan terputus

Kekurangan Topologi Tree
  • Tidak dapat digunakan kabel yang “lower grade” karena hanya menghandel satu traffic node, karena untuk berkomunikasi antara satu node ke node lainnya membutuhkan beberapa kali hops.

Selasa, 23 Juli 2019

Seputar Jaringan Komputer


Menjawab Question temen
Munkin tulisan di atas hanya bisa di baca oleh orang-orang dengan jabatan sekelas dokter dan profesor saja:v, silakan lihat yang bawah saja:"v.


Nama :Ajis Setiawan (sang penanya)

Pertanyaan :

1.Kenapa router memerlukan koneksi internet utuk menghubungkan 2 device?
2.Berapa jarak maksimal wireless untuk menguhubungkan komputer?
3. kenapa LAN harus menggunakan kabel supaya dapat menghubungkan komputer?
4.apakah modem hanya dapat mengubah sinyal digital menjadi sinyal analog?
5. apakah Bridge dapat memperkecil suatu jaringn atau hanya memerluas saja?
6.apakah hub hanya bisa mengubah sinyal transmisi jaringan saja?
7.kenapa switch dapat mengatasi masalah covisian data,sedangkan hub bisa?
8.apakah kabel data hanya dapat bertukar data saja?
9.bagaimana caranya repeater dapat memperluas jaringan wifi?
10.bagaimana caranya acces point dapat menghubungkan 2 jenis jaringan yang berbeda?

Pembahasan :

1.karena router tersambung dengan modem dan modem butuh internet untuk melakukan proses (simple nya gituh:v)
Modem=>router=>switch=>pc

2.sudah banyak yang bertanya seperti ini:".saya akan mencoba menjelaskan secara sederhana,Teknologi wireless dimulai dari wireless A 802.11a (1 mbps),wireless B 802.11b (11 mbps) wireless G 802.11g (54 mbps) wireless N 802.11n (150 mbps) wireless AC 802.11ac(3.2 gbps)
Jumlah klien maksimal bergantung pada aktivitas klien dan bandwith yang di perlukan
Contoh:
Saya mempunyai sebuah Ap tipe G.Rata" klien membutuhkan bandwith 1 mbps
Karena wireless G adalah half duplex jadi bandwith teoritisnya adalah 27 mbps.
Karena posisi klien dam interferensi gelombang radio maka menjadi faktor pengurang (anggap 80%)
Jadi.===>27 mbps x 80% =21.6 mbps

Simpel kan:v

3.yah karena lokasi nya terbatas:v

4.modem adalah alat komunikasi 2 arah
Data dari komputer berbentuk sinyal digital di berikan kepada modem untuk di ubah menjadi sinyal analog
Ketika modem menerima data dari luar berupa sinyal analog,modem mengubahnya kembali ke sinyal digital supaya dapat proses lebih lanjut oleh konputer

5.jawabanya bisa memperluas dan memperkecil

6.ya.
Jangan tanya kenapa cuma jawab ya:v karena pertanyaannya gx di suruh ngejelasin:"v

7.karena berbeda.
Switch dapat mengenal MAC address sehingga switch dapat memilih data yang di transmisi

8.ya.
Ya udah iya:v

9.Caranya dengan menempatkan wireless adapter di antara router dan komputer untuk memperkuat serta memperluas sinyal

10.Acces point akan dihubungkan dengan router/hub/switch melalui kabel ethernet dan memancarkan sinyal wifi di area tertentu.


Ya itu dia pertanyaan yang bisa saya jawab:v maaf melenceng:"v
Semoga dapat menambah IQ kalian man teman

By.Taufiqteenstory
Alias=>Taufiqurrohman Alfaris


Selasa, 16 Juli 2019

Broken Home

Broken Home

Hasil gambar untuk animasi Broken Home
Broken Home...itu yang akan saya bahas kali ini,saya juga termasuk anak yang mengalami Broken Home.Dengan dibuat nya Blog ini saya bertujuan untuk memberi kesempatan pada setiap orang untuk Sharing,Berbagi Perasaan dan yang pasti tidak membuat kalian semua merasa kesepian.

kenapa sih kita harus mengalami Broken Home :"?Apa kalian tidak tahu apa yang kita rasakan,melihat kalian berdua bertengkar,mengucapkan kata-kata kasar,bahkan kalian menjadikan anak kalian sebagai pelampiasan.
Ayah... Ibu... yang kita butuhkan ialah perhatian kalian,bukan kata-kata kasar kalian.
Ayah... ibu... kita hanya ingin kasih sayang dari kalian,kita membutuhkan itu:)
Kita...hanyalah anak yang haus kasih sayang dari orang tua nya,tidak bisakah kalian memikirkan anak kalian?kumohon.... kembali lah.Anak kalian membutuhkan kalian,

Ayah Ibu ingatkah kalian saat kita semua bersama?saat kita saling bersenda gurau,disaat semua bahagia menikmati indahnya kebersamaan keluarga.kita hanya ingin merasakan itu kembali
Jadi kembali lah seperti semula,tolong pikirkan anak kalian,masa depan anak kalian.

Anak kalian membutuhkan kasih sayang kalian...


Bagi kalian yang mengalami Broken Home,mari kita mencoba untuk menyatukan mereka kembali:).Tetap semangat menjalani hidup dan berjuang untuk membanggakan orang tua kalian.
Kita harus mencoba menyatukan mereka kembali dengan cara apapun,entah itu membuat bangga orang tua kita,merayu,memohon,atau pun membuat mereka ingat kembali tentang indahnya kebersamaan.

Jika kalian bersedih dan ingin meluapkan sesuatu,datang lah kepada sahabat ataupun orang yang kalian percaya.Datanglah ke Blog ini,karena kita semua adalah teman,sahabat yang mengalami hal yang sama,kita akan mendengar kan keluh kesah kalian, memberi solusi dan menghibur kalian:)